Quadratic Questions

Example and Explanation

Questions

Q1.

The region \mathbf{R}, shown shaded in the diagram, is the region between two circles with the same centre.

$$
A_{n e a_{0}}=\pi r^{2}
$$

The area of R is greater than the area of a circle of radius $(n+13) \mathrm{cm}$.
n is an integer.
The outer circle has radius $(2 n+6)$
The inner circle has radius ($n-1$) All measurements are in centimetres.
$\begin{aligned} & \text { Find the least possible value of } n \text {. } \\ & \text { You must show all of your }\end{aligned}(2 n+6)(2 n+6)-\pi(n-1)(n-1)>\pi(n+13)(n+13)$
You must show all of your working.
$\therefore\left(\left(4 n^{2}+24+36\right)-\left(n^{2}-2 n+1\right)\right) \pi>\left(n^{2}+26 n+169\right) \pi$
$\therefore\left(3 n^{2}+26 n+35\right) \pi>\left(n^{2}+26 n+169\right) \pi$
$\therefore \sim^{2}\left(2 n^{2}\right) \pi>134 \pi$

As $n \in \mathbb{Z}, \sqrt{67}>8$ so $n \geq 9$.

Q1
The region \mathbf{S} shown in the diagram below is the region between two concentric circles. Concentric means that the circles have the same centre.

The outer circle has radius $(2 k+6)$.
The inner circle has radius $(k-1)$.
All measurements are in metres.

The area of \mathbf{S} is greater than the area of a circle of radius $(k+13) m$.
k is an integer.

Find the least possible value of k.
You must show all your working.

Q2
The region \mathbf{S} shown in the diagram below is the region between two concentric circles.

The outer circle has radius $(2 k+6)$.
The inner circle has radius ($k-1$).
All measurements are in centimetres.
The area of \boldsymbol{S} is less than the area of a circle of radius $(k+13) m$.
k is an integer.
Find the maximum possible value of k .
You must show all your working.

Q3
The region \mathbf{S} shown in the diagram below is the region between two concentric circles.

The outer circle has radius ($3 t+9$).
The inner circle has radius ($t-9$).
All measurements are in metres.

The area of \mathbf{S} is greater than the area of a circle of radius $(t+15) m$.
t is an integer.

Find the least possible value of t.
You must show all your working.

Q4
The region \mathbf{S} shown in the diagram below is the region between two concentric circles.

The outer circle has radius $(5 f+3)$.
The inner circle has radius ($3 f-4$).
All measurements are in centimetres.

The area of \mathbf{S} is greater than the area of a circle of radius $(2 f-14) m$.
f is an integer.

Find the least possible value of f.
You must show all your working.

Knowledge Test

1. Concentric means ...
2. What is the name given to equations of the type $3 x^{4}+5 x^{3}-12 x^{2}+x-41=12 ?$
3. $(3 x+7)$ is called $a b$
4. An equation of highest order two is called a
5. An equation of highest order three is called a
\qquad -
6. Circle the formula for the area of a circle.
